# 水热合成法制备非晶态 $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 薄膜及其光吸收性能 \*

孙 形<sup>1,2</sup>,李 微<sup>1,2</sup>,刘连利<sup>3</sup>,徐姝颖<sup>1,2</sup>,杨海龙<sup>1,2</sup>

(1 渤海大学化学化工与食品安全学院,锦州 121013;2 渤海大学辽宁省应用化学重点实验室,锦州 121013;3 渤海大学实验管理中心,锦州 121013)

摘要 以K9玻璃为基片,在柠檬酸存在的碱性体系内,采用水热合成法制备了非晶态  $\alpha$ Fe<sub>2</sub>O<sub>3</sub> 薄膜,并对样 品进行了 XRD、SEM、FT-IR、UV-Vis 表征。研究结果表明,随着反应体系初始 pH 值升高及 Fe<sup>3+</sup> 初始质量浓度增 大,所得样品的结晶度略有增大。水热反应体系初始 pH 值从 9.5 升高至 10.5,薄膜表面沉积颗粒增大,薄膜逐渐致 密。但当 pH 值继续升高至 11 时,沉积颗粒减小,且存在较大孔隙。水热体系中 Fe<sup>3+</sup> 初始质量浓度增大至 1.2 g/L 时,薄膜表面沉积颗粒最大,颗粒间孔隙较大。Fe<sup>3+</sup> 质量浓度继续增大,颗粒减小,薄膜表面致密、均匀。反应体系初始 pH 值较低时,有少量柠檬酸随非晶态  $\alpha$ Fe<sub>2</sub>O<sub>3</sub> 沉积,反应过程中非晶态  $\alpha$ Fe<sub>2</sub>O<sub>3</sub> 与玻璃基底有化学键力的结合。水热反应初始 pH 值为 11 时,薄膜对紫外光的吸光度最大。当 Fe<sup>3+</sup> 初始质量浓度为 1.5 g/L 时,薄膜对紫外光的吸光度最高,当 Fe<sup>3+</sup> 初始质量浓度为 1.2 g/L 时,薄膜对可见光的吸光度最低,反射率最高。

关键词 非晶态 α-Fe<sub>2</sub>O<sub>3</sub> 薄膜 光学性能 柠檬酸 水热合成法
 中图分类号:TB332
 文献标识码:A

# Preparation and Optical Absorption Properties of Non-crystalline α-Fe<sub>2</sub>O<sub>3</sub> Thin Film by Hydrothermal Synthesis Method

SUN Tong<sup>1,2</sup>, LI Wei<sup>1,2</sup>, LIU Lianli<sup>3</sup>, XU Shuying<sup>1,2</sup>, YANG Hailong<sup>1,2</sup>

(1 College of Chemistry, Chemical Engineering and Food Safety, Bohai University, Jinzhou 121013;2 Key Laboratory of Applied Chemistry, Bohai University, Jinzhou 121013;3 Management Center for Science & Experiment Technology, Bohai University, Jinzhou 121013)

**Abstract** Non-crystalline  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> thin films were prepared on the K9 glass substrate by hydrothermal synthesis method in the citric acid-alkalic condition, and the samples were characterized by XRD, SEM, FT-IR and UV-Vis. The results show that the crystallinities of the samples are slightly increased with the increasing of the initial pH and initial concentration of reaction system. When pH increased from 9.5 to 10.5, the deposited particles increased and the thin films were compact. However, samller grain size and bigger porosity were presented at the pH value of 11. At Fe<sup>3+</sup> initial concentration of 1.2 g/L, the grains and the porosities were the biggest. With the increase of Fe<sup>3+</sup> initial concentration, the nano-particles get smaller, and the film surface were compact and uniform. Moreover, a little of citric acid deposited with  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> particles at low initial pH value. Non-crystalline  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> was connected with glass-substrate by chemical bond. Meanwhile, the ultraviolet-light absorbance of the film was the hightest at initial pH of 11 and Fe<sup>3+</sup> initial concentration of 1.5 g/L. When Fe<sup>3+</sup> initial concentration was 1.2 g/L, the visible light absorbance of the film was the lowest, and reflectivity was the hightest.

Key words non-crystalline  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>, thin film, optical property, citric acid, hydrothermal synthesis method

## 0 引言

氧化铁是一种重要的无机非金属材料,相对于传统氧化 铁产品,纳米氧化铁在光学、磁学、电学、模量、强度、阻透性 等方面的性能大为改善,具有奇特的磁性、催化性质以及更 优良的耐候性、耐光性、紫外线吸收和屏蔽效应<sup>[1-4]</sup>。因此, 其应用范围也不再局限于建筑、涂料、橡胶、陶瓷等传统领 域,在生物医学、电子信息材料、军事、环境保护等方面也体 现出了良好的应用前景<sup>[5-9]</sup>。纳米氧化铁的制备方法包括气相法<sup>[1]</sup>、液相法和固相法<sup>[10]</sup>。液相法包括化学沉淀法<sup>[11]</sup>、水 热合成法<sup>[4,12]</sup>、凝胶-溶胶法<sup>[13-15]</sup>和模板法<sup>[16,17]</sup>等。与其他 方法相比,水热合成法具有产物形状尺寸易于控制、纯度高、 制备时间短等特点。纳米氧化铁薄膜作为一种无机纳米薄 膜,具有更佳的热稳定性、化学稳定性、耐微生物性和较高的 机械强度,具有良好的应用前景<sup>[1,4,7,11,18-20]</sup>,但其光吸收性能 的研究鲜见报道。

<sup>\*</sup> 辽宁省教育厅科学技术研究项目(L2013429);辽宁省高等学校创新团队支持计划(LT2012020) 孙彤:女,1966年生,博士,教授,研究方向为资源与环境物理化学 E-mail:jzsuntong@sina.com

本研究在柠檬酸存在的碱性体系中,采用水热合成法在 K9玻璃片上制备纳米氧化铁薄膜,并研究其对紫外光和可 见光的吸收性能。

## 1 实验

## 1.1 实验试剂、仪器

实验所用试剂(如氯化铁、柠檬酸、氢氧化钠等)均为分析纯,溴化钾为红外分析专用试剂,水热反应釜内衬为聚四氟乙烯,待镀膜玻璃片为 K9 玻璃片。样品表征分析仪器包括X射线自动衍射仪(Rigaku Ultima IV,日本理学 Rigaku 公司)、红外分光光度计(Varian2000FT-IR 美国 Varian 公司)、场发射扫描电子显微镜(S-4800,日本日立公司)、紫外可见分光光度计(UV-2550,日本岛津公司)。

### 1.2 水热合成法制备非晶态 Fe<sub>2</sub>O<sub>3</sub> 薄膜

取 15 mL Fe<sup>3+</sup> 质量浓度为 1.5 g/L 的 FeCl<sub>3</sub> 溶液,按  $n_{Fe^{i+}}: n_{Fr\nothermit} = 1:2$ 加入柠檬酸,待其完全溶解后,磁力搅拌 条件下逐滴加入 8 mol/L NaOH 溶液调节至不同 pH 值,搅 拌均匀后将溶液转入封闭的水热反应釜中,填充度为 75%。 将待镀膜玻璃片(K9 玻璃片)垂直置于液面下,封闭反应釜, 于 160 ℃恒温反应 4 h,自然冷却至室温。取出玻璃片,超声 清洗,于 80 ℃烘干,得玻璃薄膜。釜中粉体用去离子水充分 洗涤,于 80 ℃烘干。对制备的薄膜进行 SEM、UV-Vis 表征, 对同时制备的粉体进行 XRD、FT-IR 表征分析。

### 2 结果与讨论

#### 2.1 样品的 XRD 分析

图 1 是不同反应条件下制备粉体的 XRD 谱图。由图 1 可见,样品在 35~36°的衍射峰为弱而宽的馒头峰,相关研究 结果表明,样品为非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub><sup>[21]</sup>。实验室前期研究结果 表明,在碱性体系中无柠檬酸存在时,体系内首先生成  $\alpha$ -FeOOH晶体,而后转化为  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 晶体。分析认为,在碱 性体系中 Fe<sup>3+</sup>与 OH<sup>-</sup>形成配合物,在高温高压的水热反应 条件下转化为  $\alpha$ -FeOOH 晶体析出,继续反应, $\alpha$ -FeOOH 晶 体溶解,转化为  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 晶体析出。当在上述碱性水热体系 内加入柠檬酸后,该三元有机弱酸在水热体系内逐级解离, 解离的酸根离子与 Fe<sup>3+</sup>形成配合物,减少了体系内游离 Fe<sup>3+</sup>,因此改变了反应历程,使产物未形成晶体,而以非晶态 的  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 形式析出。

由图 1(a)可见,随着反应体系初始 pH 值升高,所得样 品的结晶度略有增大。由图 1(b)可见,随着 Fe<sup>3+</sup>初始质量 浓度的增大,样品结晶度提高,当 Fe<sup>3+</sup>初始质量浓度达 1.5 g/L 时,结晶度最高,继续增大 Fe<sup>3+</sup>质量浓度,其结晶度不再 继续增加。分析认为,随着水热体系内 pH 值升高,溶液中柠 檬酸解离程度增大,同时游离的 OH<sup>-</sup>增加,两者均与 Fe<sup>3+</sup>形 成配合物。虽然常温下柠檬酸与 Fe<sup>3+</sup>形成配合物的稳定性 小于 OH<sup>-</sup>与 Fe<sup>3+</sup>形成配合物,但由于柠檬酸的存在改变了 水热反应的反应历程,产物呈非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 析出,故在较高 pH 值条件下,更多的 OH<sup>-</sup>抑制了柠檬酸根的作用,使样品 的结晶度略有增大。当溶液中初始 pH 值相同时,若 Fe<sup>3+</sup>初 始质量浓度较小,在水热反应过程中,Fe<sup>3+</sup>与OH<sup>-</sup>或柠檬酸 根形成配合物,体系中游离的Fe<sup>3+</sup>较少,则非晶态纳米  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>形成较慢,样品的结晶度很低,其XRD 谱图中衍射峰 强度较小。当Fe<sup>3+</sup>初始质量浓度较大时,在水热反应过程 中,体系中游离的Fe<sup>3+</sup>较多,则形成非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub>的结晶 度提高。



图 1 不同反应条件下制备样品的 XRD 谱图

Fig. 1 XRD patterns of the samples prepared at different reaction condition

2.2 Fe<sub>2</sub>O<sub>3</sub> 薄膜的 SEM 分析

在不同反应条件下制备薄膜的微观形貌如图 2((a)-(g)为薄膜表面微观形貌,(h)为薄膜断面微观形貌)所示。 由图 2(a)-(d)可见,水热反应初始 pH 值影响 Fe<sub>2</sub>O<sub>3</sub> 薄膜 的微观形貌。当 Fe<sup>3+</sup>初始质量浓度为 1.5 g/L、pH 值为 9.5 时,薄膜表面沉积颗粒较小,为10~20 nm 的无规则形状颗 粒,堆积松散,有少量团聚,颗粒间孔隙较大;pH值为10时, 薄膜表面沉积 20~50 nm 的无规则形状颗粒,有团聚,颗粒 间孔隙减小,薄膜较连续,致密度提高;提高 pH 值至 10.5, 薄膜表面沉积 20~40 nm 的无规则形状颗粒,颗粒团聚严 重,其间孔隙很小,薄膜更加平整、连续;pH 值为 11 时,薄膜 表面沉积分散状态良好的 10~20 nm 球形颗粒,颗粒间孔隙 较多,且存在较大孔隙。柠檬酸是三元有机弱酸,常温常压 条件下其解离常数为  $pK_{a1} = 3.13$ ,  $pK_{a2} = 4.76$ ,  $pK_{a3} = 6.40$ 。 在高温高压的水热反应体系中,柠檬酸的解离受到抑制。分 析认为,在水热反应初始 pH 值为 9.5 的弱碱性条件下,溶液 中 OH-平衡浓度较小,柠檬酸的解离程度也相对较低,游离 的 Fe<sup>3+</sup>质量浓度相对较大,则反应过程中的成核速度较快, 但样品沉积速度较慢,因此薄膜表面沉积颗粒较小。随着水 热体系初始 pH 值升高至 10,溶液中 OH-平衡浓度增大,柠 檬酸的解离程度增大,体系内游离 Fe<sup>3+</sup>的质量浓度减小,样

品的成核速度较小,但其沉积速度较大。继续升高 pH 值,样 品的沉积速度更快,则出现薄膜表面颗粒团聚严重、孔隙很 小的现象。当水热体系初始 pH 值升高至 11 时,由于溶液中 OH<sup>-</sup>平衡浓度增大且柠檬酸解离程度增大,其与 Fe<sup>3+</sup> 的配 位程度增加,抑制样品成核的同时也抑制了其沉积速度,故 薄膜表面颗粒较小,堆积松散。



图 2 不同反应条件下制备薄膜的微观形貌 Fig. 2 Microstructures of the films prepared in different reaction condition

由图 2(d)-(g)可见,水热体系中 Fe<sup>3+</sup>初始质量浓度影 响  $Fe_2O_3$  薄膜的微观形貌。 $Fe^{3+}$  初始质量浓度为 0.9 g/L 时,薄膜表面沉积 10~20 nm 的无规则形状的团聚态颗粒, 颗粒间孔隙较多,大孔隙较少,薄膜表面粗糙;当 Fe<sup>3+</sup>质量浓 度为1.2g/L时,薄膜表面沉积20~50 nm的无规则形状颗 粒,分散状态良好,颗粒间孔隙较大,薄膜表面粗糙;继续增 大 Fe<sup>3+</sup>初始质量浓度,薄膜表面沉积颗粒尺寸减小,分散状 态不变,颗粒间孔隙减小,薄膜表面逐渐变得致密、均匀。分 析认为,在同样的 pH 值条件下,当  $Fe^{3+}$ 初始质量浓度为 0.9 g/L时,由于柠檬酸初始浓度较低,则其解离程度较大,与游 离 Fe<sup>3+</sup>的配位程度较小,溶液饱和度较低,成核较少,颗粒生 长较慢,故沉积颗粒较小;提高 Fe<sup>3+</sup>初始质量浓度为 1.2 g/L 时,体系内游离 Fe<sup>3+</sup>饱和度增大,颗粒生长速度提高,颗粒增 大;当 Fe<sup>3+</sup>初始质量浓度继续增大时,由于体系内柠檬酸初 始浓度较大,在强碱性条件下解离,游离的柠檬酸根离子浓 度及 OH-平衡浓度均较大,与 Fe<sup>3+</sup>形成的配合物较多,在样 品沉积过程中逐渐解离释放出游离的 Fe<sup>3+</sup>,抑制了颗粒的生 长,故薄膜表面沉积颗粒较小。

#### 2.3 样品的 FT-IR 分析

图 3 是制备薄膜时所得粉体的 FT-IR 谱图。

由图 3(a)曲线 1 可见,在 3417 cm<sup>-1</sup>和 1632 cm<sup>-1</sup>的吸收 峰是由于样品中吸附水的 O-H 伸缩振动和弯曲振动引起 的,说明样品中存在表面吸附水。在 3366 cm<sup>-1</sup>和 1670 cm<sup>-1</sup> 处的吸收峰对应于结晶水的 O-H 伸缩振动和弯曲振动,说 明样品中存在结晶水。



Fig. 3 FT-IR patterns of the samples prepared at different reaction conditions

由图 3(a)可见,随着反应体系初始 pH 值升高,样品中

结晶水的吸收峰强度逐渐减弱,至反应体系初始 pH 值为 11 时,此吸收峰消失,说明样品中结晶水含量随 pH 值升高而逐 渐降低至消失,而表面吸附水仍然存在。这是由于反应初始 pH 值较低时,体系内[OH<sup>-</sup>]较低,在非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 沉积过 程中有部分水分子以结晶水形式析出。而随着反应体系中 初始 pH 值升高,体系内[OH<sup>-</sup>]较高,改变了非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 沉积的反应历程,水分子不能以结晶水形式析出。2922 cm<sup>-1</sup>和 1392 cm<sup>-1</sup>处的 2 个峰分别为柠檬酸分子中-CH<sub>2</sub> 的 伸缩振动和弯曲振动峰,1493 cm<sup>-1</sup>和 1443 cm<sup>-1</sup>处为柠檬酸 分子中-COOH的对称和反对称伸缩振动峰,1097 cm<sup>-1</sup>处的 吸收峰为 C-O 的吸收峰。由图 3(a)可见,样品中上述吸收峰 强度随 pH 值升高逐渐降低至消失,说明反应体系初始 pH 值较低时,有少量柠檬酸随非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 沉积,而当体系的 碱度较强时,由于柠檬酸解离为酸根离子,溶解于水热体系 的溶液中,在粉体沉积过程中未沉积。

图 3 中 610 cm<sup>-1</sup>和 455 cm<sup>-1</sup>处的吸收峰归属为 Fe-O 伸 缩振动吸收峰,进一步说明样品中有非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 形成,且 当水热反应体系碱性较强时,该吸收峰强度增大,说明碱性 条件有利于沉积物的形成。1023 cm<sup>-1</sup>和 829 cm<sup>-1</sup>处的吸收 峰是 Si-O-Si、Fe-O-Si 的振动吸收峰,972 cm<sup>-1</sup>处的吸收峰是 Si-OH 的振动吸收峰,757 cm<sup>-1</sup>处的吸收峰是 Fe-OH 的振动 吸收峰。由图 3(a)可见,随着反应体系初始 pH 值升高,粉 体中 Fe-OH 和 Si-OH 吸收峰强度减弱至消失。说明反应体 系初始 pH 值较低时有利于-OH 形成,且在沉积物中与 Fe、 Si 发生化学键结合,而碱性较强的水热反应体系中,产物沉 积过程中-OH 不易形成。此外,Si-O-Si、Fe-O-Si 的吸收峰说 明在反应过程中  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 与玻璃基底有化学键力的结合。

由图 3(b)可见,水热体系中 Fe<sup>3+</sup>初始质量浓度的改变 对吸收峰的强度和位置影响较小,说明 Fe<sup>3+</sup>质量浓度未影响 产物的反应历程,只影响反应速度。

### 2.4 Fe<sub>2</sub>O<sub>3</sub> 薄膜的 UV-Vis 光谱分析

图 4 为水热体系不同初始 pH 条件下制备的 Fe<sub>2</sub>O<sub>3</sub> 薄膜 的 UV-Vis 分析结果。由图 4(a)曲线 1 可见,样品对 220~ 330 nm 范围的紫外光有吸收,当水热反应初始 pH 值较低 时,薄膜对紫外光的吸光度小于玻璃基片,随着 pH 值升高, 样品对紫外光的吸光度增大。而薄膜对可见光的吸光度相 对大小与对紫外光的吸光度规律刚好相反。由图 4(b)可见, 样品对光的反射率与吸光度规律相反,说明样品吸光度改变 是由于其对光的反射造成的。

综合分析认为,对于波长较短的紫外光,当水热反应体 系初始 pH 值为 9.5 时,由于薄膜表面沉积物松散,颗粒间孔 隙较大,对紫外光的反射多、散射多,不利于薄膜对紫外光的 吸收,其吸光度较低;当 pH 值为 10 时,薄膜表面颗粒增大, 但孔隙变小,有利于对紫外光的捕捉,吸光度增大;当 pH 值 为 10.5 时,薄膜致密度较高,表面有较深的窄小孔洞,紫外 光在薄膜表面的反射率较低,散射增强,其对紫外光的吸光 度增大;当 pH 值为 11 时,薄膜粗糙度较高,薄膜表面的孔洞 和颗粒的三维堆积方式均有利于降低紫外光的反射率,促进 其吸收紫外光性能的提高。对于波长较大的可见光,当反应 体系初始 pH 值为 9.5 时,薄膜表面的大空隙有利于对可见 光的吸收,表现为对可见光的吸光度较大,反射率较小;当 pH 值为 10 时,薄膜表面空隙减小,颗粒增大,对可见光的反 射率增大,吸光度减小;当 pH 值为 10.5 时,薄膜致密度提 高,表面平滑,增加了对可见光的反射,使其对可见光的吸光 度更小;当 pH 值为 11 时,薄膜表面空隙更小,长波长的可见 光不能有效进入空隙,表面的大颗粒使其对可见光反射增 多,散射减少,吸光度降低。



## 图 4 不同 pH 值下制备的薄膜的紫外可见光谱图 Fig. 4 UV-Vis spectra of the films prepared at different pH

图 5 为水热体系初始 pH 值为 11 时,不同 Fe<sup>3+</sup>初始质 量浓度下制备的 Fe<sub>2</sub>O<sub>3</sub> 薄膜的 UV-Vis 分析结果。

由图 5 可见,样品对波长为 220~330 nm 范围的紫外光 均有吸收,当 Fe<sup>3+</sup>初始质量浓度为 0.9 g/L 和 1.2 g/L 时, 薄膜吸光度与玻璃基片相当,当 Fe<sup>3+</sup>初始质量浓度升高至 1.5 g/L 时,薄膜吸光度最高,继续增加 Fe<sup>3+</sup>初始质量浓度, 薄膜吸光度下降。薄膜对紫外光的反射率呈相反的规律。 在可见光范围内,薄膜的吸光度均低于玻璃基片,对可见光 的反射率均高于基片。当 Fe<sup>3+</sup>初始质量浓度为 1.5 g/L 时, 薄膜对可见光的吸光度最低,当 Fe<sup>3+</sup>初始质量浓度为 1.2 g/ L 时,薄膜对可见光的反射率最高。

分析认为,对于波长较短的紫外光,当水热反应体系 Fe<sup>3+</sup>初始质量浓度为0.9 g/L和1.2 g/L时,由于薄膜表面 粗糙,颗粒间孔隙较大,对紫外光的反射少,散射多,不利于 薄膜对紫外光的吸收,吸光度较低;当Fe<sup>3+</sup>初始质量浓度升 高至1.5 g/L时,薄膜表面连续性增强,孔隙减小,有利于对 紫外光的捕捉,吸光度增大;增加Fe<sup>3+</sup>初始质量浓度至1.8 g/L时,薄膜表面沉积颗粒尺寸减小,孔隙减小,薄膜表面逐 渐变得致密。到达薄膜表面的短波长紫外光被致密的薄膜 反射,故其对紫外光的吸光度减小。对于波长较大的可见 光,当水热反应体系 Fe<sup>3+</sup>初始质量浓度为 1.5 g/L 时,薄膜 表面的孔洞和颗粒的三维堆积方式增加了其对可见光的衍 射和散射,致使吸光度较低。当 Fe<sup>3+</sup>初始质量浓度为 1.2 g/ L 时,薄膜表面沉积颗粒较大,颗粒间孔隙较大,可见光在颗 粒间的衍射减少,故其反射率较高,吸光度较低。



图 5 不同 Fe<sup>3+</sup>质量浓度下制备的薄膜紫外可见光谱图 Fig. 5 UV-Vis spectra of the films prepared in different Fe<sup>3+</sup> concentration

## 3 结论

在柠檬酸存在的碱性体系内,采用水热合成法在 K9 玻 璃片上制备了非晶态 α-Fe<sub>2</sub>O<sub>3</sub> 薄膜。薄膜的表面形貌、沉积 颗粒结晶度、光学性能等均受反应体系初始 pH 值及 Fe<sup>3+</sup>初 始质量浓度影响。

随着反应体系初始 pH 值升高及 Fe<sup>3+</sup>初始质量浓度增 大,所得样品的结晶度略有增大。当水热反应初始 pH 值为 10.5 时,薄膜表面沉积颗粒最大,团聚严重,其间孔隙很小, 薄膜平整、致密;水热体系中 Fe<sup>3+</sup>初始质量浓度为 1.2 g/L 时,薄膜表面沉积颗粒最大,分散状态良好,颗粒间孔隙较 大,薄膜表面粗糙。Fe<sup>3+</sup>质量浓度继续增大,薄膜表面沉积 颗粒尺寸减小,颗粒间孔隙减小,薄膜表面逐渐变得致密、均 匀。当反应体系初始 pH 值较低时,有少量柠檬酸随非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 沉积,反应过程中非晶态  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> 与玻璃基底有化 学键力的结合。随着水热反应初始 pH 值增加及 Fe<sup>3+</sup>初始 质量浓度增大,样品对紫外光的吸光度增加,对可见光的吸 光度下降。当 Fe<sup>3+</sup>初始质量浓度为 1.5 g/L 时,薄膜对紫外 光的吸光度最高,当 Fe<sup>3+</sup>初始质量浓度为 1.2 g/L 时,薄膜 对可见光的吸光度最低,反射率最高。

#### 参考文献

rhodamine B with ferric oxide thin films under solar illumination[J]. Mater Res Bull,2013,48(10):4058

- 2 Vinita M, Praveena Juliya Dorathi R, Palanivelu K. Degradation of 2, 4, 6-trichlorophenol by photo Fenton's like method using nano heterogeneous catalytic ferric ion[J]. Solar Energy, 2010, 84(9):1613
- 3 Óscar A Loaiza, Elena Jubete, et al. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes [J]. Biosensors Bioelectronics, 2011, 26(5); 2194
- 4 Wan Lijuan, et al. Seed-mediated hydrothermal synthesis and photoelectrochemical properties of hematite thin films
  [J]. Chinese J Inorg Chem, 2011, 27(4):747
  万丽娟,等. 氧化铁薄膜的水热合成及其光电转换性能
  [J]. 无机化学学报, 2011, 27(4):747
- 5 Masarin Ban, Isabelle Langonné, et al. Effect of submicron and nano-iron oxide particles on pulmonary immunity in mice
   [J]. Toxicology Lett, 2012, 210(3):267
- 6 Mohammad Ali Zolfigol, Ahmad Reza Moosavi-Zare, Parvin Moosavi, et al. Nano-ferrous ferric oxide (nano-Fe<sub>3</sub>O<sub>4</sub>): Powerful, reusable, and stable catalyst for N-Boc protection of amines[J]. Comptes Rendus Chimie, 2013, 16(11):962
- 7 Yadav B C, Satyendra Singh, Anuradha Yadav. Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor[J]. Appl Surf Sci, 2011, 257(6):1960
- 8 Lv Baoliang, Xu Yao, Wu Dong, et al. Preparation and characterization of porous α-Fe<sub>2</sub>O<sub>3</sub> Nanodisks [J]. Chinese J Inorg Chem, 2008, 24(10):1690

吕宝亮,徐耀,吴东,等.多孔氧化铁纳米盘的制备与表征[J].无机化学学报,2008,24(10):1690

- 9 Xueyan Zou, Kun Li, Yanbin Yin, et al. Synthesis of petallike ferric oxide/cysteine architectures and their application in affinity separation of proteins[J]. Mater Sci Eng C,2014, 34(1):468
- Li Miaomiao. Synthesis, characterization and properties research of iron oxide and its semiconductor composite[D]. Xi'an: Shaanxi University of Science Technology,2013 李苗苗. 氧化铁及其复合半导体材料的制备、表征与性质研 究[D]. 西安: 陕西科技大学,2013
- 11 Dong Fu, Clara Wren J. Preparation and characterization of ferric oxyhydroxide and ferric oxide thin films by direct-hydrolysis deposition[J]. J Nuclear Mater, 2008, 374(1-2):116
- 12 Zhou Qiuling, Li Chunzhong, Gu Feng, et al. Hydrothermal synthesis of Fe<sub>2</sub>O<sub>3</sub> with different nanostructures[J]. J Funct Mater, 2008, 39(9):1522

周秋玲,李春忠,顾锋,等.水热合成氧化铁纳米结构及机 理分析[J].功能材料,2008,39(9):1522 approach [J]. J Mater Chem, 2009, 19:2373

13 Cai Li, Hu Binbin, et al. Fractal structure formation of zinc hydroxide nitrate under a behenic acid langmuir monolayer combined with ammonia vapor diffusion[J]. Acta Chim Sinica,2009.67(21):2445

蔡莉,胡彬彬,等.山嵛酸 Langmuir 膜结合氨气扩散控制生 长碱式硝酸锌的分形结构[J].化学学报,2009,67(21):2445

14 Xiong Haoyang, Hu Binbin, et al. Growth of PbS crystals under a BSA monolayer in the presence of kinetically controlled ammonia diffusion [J]. J Inorg Mater, 2010, 25(1):
63

熊浩洋,胡彬彬,等.牛血清蛋白单层分子膜诱导生长 PbS 晶体[J].无机材料学报,2010,25(1):63

- 15 Vollhardt D, Fainerman V B, et al. Thermodynamic and textural characterization of DPPG phospholipid monolayers [J]. J Phys Chem B, 2000,104(17):4115
- 16 Stöhlin W, Oswald H, et al. The crystal structure of zinc hydroxide nitrate, Zn<sub>5</sub> (OH)<sub>8</sub> (NO<sub>3</sub>)<sub>2</sub> • 2H<sub>2</sub>O[J]. Acta Crystallographica Section B: Struct Sci B,1970,26:860
- 17 Vasquez R P. X-ray photoelectron spectroscopy study of Sr and Ba compounds [J]. J Electron Spectrosc Relat Phemon, 1991,56(3):217
- 18 Huang H C, Gilmer George H, et al. An atomistic simulator for thin film deposition in three dimensions [J]. J Appl Phys, 1998, 84(7): 3636
- 19 Payne M C, Teter M P, et al. Iterative minimization tech-

#### (上接第18页)

- 13 Huang Siyu, Liu Xinyu, Wang Tongyang, et al. Iron oxide films by a novel sol-gel deposited and the optical properties [J]. Acta Ener Solaris Sinica, 2007, 28(7):711 黄思玉,刘心宇,王统洋,等. 氧化铁膜的溶胶凝胶法制备 及其光学性能[J]. 太阳能学报, 2007, 28(7):711
- 14 Cui Hongtao, Liu Yan, Ren Wanzhong. Structure switch between α-Fe<sub>2</sub>O<sub>3</sub>, γ-Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>3</sub>O<sub>4</sub> during the large scale and low temperature sol-gel synthesis of nearly monodispersed iron oxide nanoparticles[J]. Adv Powder Techn, 2013, 24(1):93
- 15 Maria Tereza Cortez Fernandes, Renata Batista Rivero Garcia, Carlos Alberto Paula Leite, et al. The competing effect of ammonia in the synthesis of iron oxide/silica nanoparticles in microemulsion/sol-gel system[J]. Colloids Surf A: Physicochem Eng Aspects, 2013, 422(5):136
- 16 Sanoe Chairam, Ekasith Somsook. Starch vermicelli template for synthesis of magnetic iron oxide nanoclusters[J]. J Magn Magn Mater, 2008, 320(15):2039
- 17 Ma Mingguo, Zhu Jiefang, Li Shuming, et al. Nanocompo-

nique for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev Mod Phys, 1992, 64 (4):1045

- 20 Biswick T, Jones W, et al. The role of anhydrous zinc nitrate in the thermal decomposition of zinc hydroxide nitrates [J]. J Solid State Chem, 2007, 180(4):1171
- 21 Dutta P, Peng J B, et al. X-ray diffraction studies of organic monolayers on the surface of water [J]. Phys Rev Lett, 1987,58(21):2228
- 22 Cooper S J, Sessions R B, et al. A new mechanism for nucleation beneath monolayer films? [J]. J Am Chem Soc, 1998,120(9):2090
- 23 Schwenzer B, Gomm John R, et al. Substrate-induced growth of nanostructured zinc oxide films at room temperature using concepts of biomimetic catalysis [J]. Langmuir, 2006,22(24):9829
- 24 Sumerel J L, Yang W, et al. Biocatalytically templated synthesis of titanium dioxide [J]. Chem Mater, 2003, 15(25): 4804
- 25 Kisailus D, Choi J H, et al. Enzymatic synthesis and nanostructural control of gallium oxide at low temperature [J]. Adv Mater, 2005, 17(3):314
- 26 Hosono E, Fujihara S, et al. Superhydrophobic perpendicular nanopin film by the bottom-up process [J]. J Am Chem Soc,2005,127(39):13458

(责任编辑 余 波)

sites of cellulose/iron oxide: Influence of synthesis conditions on their morphological behavior and thermal stability [J]. Mater Sci Eng C, 2012, 32(6):1511

- 18 Serban N, Ristoscu C, Socol G, et al. Laser synthesis of nanometric iron oxide films for thermo-sensing applications [J]. Mater Res Bull, 2014, 50:148
- 19 Carbajal-Franco G, Eastman M, Ramana C V. Structure and optical properties of iron oxide films prepared by a modified wet-chemical method [J]. Ceram Int, 2013, 39 (4): 4581
- 20 Garcia-Lobato M A, Arturo I Martinez, Dale L Perry, et al. Elucidation of the electrochromic mechanism of nanostructured iron oxides films[J]. Solar Energy Mater Solar Cells, 2011,95(2):751
- 21 Chen Yan. Phase transition in nanosized amorphous iron oxide and assembly of shell/core nanowires[D]. Qinhuangdao: Yanshan University, 2006
  - 谌岩.低维非晶氧化铁的相转变及壳/芯复合纳米线的制备[D].秦皇岛:燕山大学,2006

(责任编辑 沈耀红)