细晶 Mg-Ce 中间合金的制备及其对 AZ91D 组织和性能的影响

董天顺, 王 拓, 郑晓东, 周秀锴, 刘金海, 李国禄, 崔春辉

（河北工业大学材料科学与工程学院，天津 300132）

摘要 为了探索细晶 Mg-Ce 中间合金对 AZ91D 的变质效果，通过钢模喷铸法制备了细晶 Mg-Ce 中间合金，在此基础上研究了其对 AZ91D 组织和性能的影响。结果表明：经过钢模喷铸法获得的细晶 Mg-Ce 中间合金中 MgCe 相的平均尺寸由 50 μm 下降至 10 μm，相比于粗晶 Mg-Ce 中间合金，组织显著细化；细晶 Mg-Ce 中间合金的变质效果好于粗晶 Mg-Ce 中间合金。采用细晶 Mg-Ce 中间合金的 AZ91D 相较于粗晶 Mg-Ce 中间合金变质的 AZ91D，拉伸强度提高了 5.23%。延伸率提高了 15.14%，维氏硬度提高了 6.92%，腐蚀速率降低了 44.62%。因此，钢模喷铸是提高 Mg-Ce 中间合金变质效果的有效手段。

关键词 钢模喷铸 细晶 Mg-Ce 中间合金 AZ91D

Preparation of Fine-grained Mg-Ce Master Alloy and Its Effect on Microstructure and Properties of AZ91D

DONG Tianshun, WANG Tuo, ZHENG Xiaodong, ZHOU Xiukai, LIU Jinhai, LI Guolu, CUI Chunxiang

（School of Material Science and Engineering, Hebei University of Technology, Tianjin 300132）

Abstract In order to research the modification effect of fine-grained Mg-Ce master alloy on AZ91D, fine-grained Mg-Ce master alloy was prepared by copper mold inject casting and the influence of it on the microstructure and properties of AZ91D alloy was investigated. Results showed that the size of Mg-Ce phase in fine-grained Mg-Ce master alloy was reduced from 50 μm to 10 μm, which indicated the fine-grained Mg-Ce master alloy had been refined dramatically. The modification effect of fine-grained Mg-Ce master alloy was better than that of coarse-grained Mg-Ce master alloy. Compared with AZ91D modified by coarse-grained Mg-Ce master alloy, the tensile strength, elongation rate and Brinell hardness of AZ91D modified by fine-grained Mg-Ce master alloy increased by 5.23%, 15.14% and 6.92% respectively, and the corrosion rate decreased by 44.62%. Therefore, copper mold inject casting is an effective way to improve the modification effect of Mg-Ce master alloy.

Key words copper mold inject casting, fine-grained Mg-Ce master alloy, AZ91D

0 引言

镁合金作为一种轻合金材料，具有比强度高、密度小、可回收性好等优点，得到了越来越多的应用。其中 AZ91D 和 AM50 已被广泛应用于制作汽车方向盘、座椅骨架等。但，目前镁合金多用于受力较小的部件，其原因主要是镁合金的力学性能、耐腐蚀性及加工性能较差。然而，与其他金属相比，镁合金却有着更大的发展潜力，这是因为镁合金的性能在更大程度上取决于其晶粒尺寸。通过细化晶粒可以有效提高镁及其合金的综合性能。采用真空感应熔炼加钢模喷铸法，制得的中间合金中间合金结合了中间合金的优点，通过钢模喷铸法获得的细晶 Mg-Ce 中间合金具有更高的性能。

1 实验

1.1 主要原材料

镁锭选用日本大同公司生产的 AZ91D，其主要成分如表 1 所示。变质剂选用国产铜模铸状 Mg-Ce 中间合金，其中 Ce 含量为 30%。采用真空感应炉对 Mg-Ce 中间合金进行了钢模喷铸处理，其基本工艺过程为：首先，将铜模铸状 Mg-Ce 中间合金切成小块状并放置于石英管（管底开有直径 1.5 mm 的小孔）中，然后将感应炉的腔室抽至真空，并通入高纯氩气进行保护，最后，将石英管中与 Mg-Ce 中间合金通过高温感应加热快速熔化；最后，将石英管内通入高纯氩气，利用气体压力将金属液喷注到钢模中，制得直径 Ф 3 mm 的细晶 Mg-Ce 中间合金。
间合金。

名称	Al	Zn	Mn	Si		名称	Cu	Ni	Fe	Mg	
------	-----	-----	-----	-----							
AZ91D	8.75	0.55	0.30	0.03		AZ91D	0.025	0.001	0.0035	5	Bal.

1.2 AZ91D的熔炼和变质处理

采用井式电阻炉对AZ91D镁合金进行熔炼。采用线切割机将AZ91D切成大小合适的块状，放入石墨坩埚中，采用井式电阻炉进行熔炼，保护气氛为3% SF6+97% CO2。将AZ91D镁合金升温至760℃，撇渣加入Mg-Ce中间合金变质剂，降温至720℃，保温静置，撇渣后浇注至金属型中，待金属液凝固后取出AZ91D铸棒。

1.3 静态腐蚀实验

为了探究Mg-Ce中间合金对AZ91D耐腐蚀性能的影响，对AZ91D进行静态腐蚀实验，腐蚀液为质量分数3.5%的NaCl溶液，实验时间为72h。

1.4 检测分析

采用Hitachi S1800型场发射扫描电镜及附带的Vantage能谱仪观察试样的显微形貌并进行EDS分析；采用Nikon ECLIPSE MA100型金相显微镜观察试样的金相组织；采用SHT-5303型显微热弯机熔化设备用于做试验。拉伸试验标尺寸如图1所示；采用岛津HVM-2000型显微硬度计进行显微硬度测试（载荷为980.7mN）；采用KRUS DAS30型光学接触角测量仪测量不同AZ91D的接触角。

2 结果分析

2.1 铜模喷铸前后Mg-Ce中间合金微观组织

图2为铜模喷铸后的粗晶和细晶Mg-Ce中间合金微观组织及EDS分析结果(c)粗晶Mg-Ce中间合金低倍形貌；(b)图2(c)中A处的局部高倍形貌；(c)细晶Mg-Ce中间合金低倍形貌；(d)细晶Mg-Ce中间合金高倍形貌。图2(a)中B区域的EDS分析结果(f)图2(b)中C处的EDS分析结果(g)。由图2(a)和(b)可知，原始Mg-Ce中间合金的组织由两相组成，即大面积分布的块状相和在其边缘分布的凹凸不平的条状相，其中块状相的尺寸在50μm以上。由图2(c)可知块状相中Mg和Ce原子比接近1:2，而条状相中Mg和Ce的原子比则更高。结合Mg-Ce二相图(见图3)，可以确定，块状相为Mg-rich相，条状相为Mg-Ce中间合金的共晶组织。由图2(e)和(d)可知，经铜模喷铸之后，Mg-Ce中间合金的组织明显细化，Mg17Ce的尺寸降至10μm左右。

2.2 AZ91D金相组织分析

图4为不同变质条件下AZ91D的金相组织分析(c)未变质(d)粗晶Mg-Ce变质；(e)细晶Mg-Ce变质；(f)Mg-Ce变质高倍SEM形貌。图4(d)中A点EDS分析结果。图4(a)为未经变质的AZ91D金相组织，其中大区域分布的浅色部分为α-Mg基体，呈网状分布的组织为β-Mg7Al2，β-Mg7Al2尺寸较大，沿基体晶界不连续分布，割裂了基体，削弱了AZ91D的力学性能。AZ91D的晶粒尺寸在150μm左右，晶粒比较粗大。
金相组织。经粗晶 Mg-Ce 中间合金变质后，β-Mg-Al 组织明显细化，网状 β-Mg-Al 消失，变为小颗粒化，呈分布较为均匀弥散，组织形态得到明显改善；组织中出现了针状的新相。同时，AZ91D 的晶粒尺寸下降至 50 μm 左右，变质效果相当明显。

图 4(c) 为经 3%中间合金变质的 AZ91D 金相组织。经中间合金 Mg-Ce 中间合金变质的 AZ91D，其 β-Mg-Al 变为更加细小，呈细小的点状，分布更为均匀弥散，并且在这些下难以观察到针状相。AZ91D 的晶粒尺寸进一步下降至 20 μm 左右。图 4(d) 细晶 Mg-Ce 变质的 AZ91D 高倍 SEM 形貌可知，针状相在基体中的分布较为均匀，尺寸变得极为细小。在 1～5 μm 之间。同时，β-Mg-Al，也呈近似圆形分布。图片 4(e) 能谱分析结果中，针状相主要由 Mg、Al、Zn、Ce 元素组成。由于 EDS 能谱分析最小分辨区域为 1 μm×1 μm[3]，而针状相的宽度在 1 μm 以下，因此对针状相的 EDS 分析结果中会存在微量元素 Mg、Zn。由于 EDS 分析结果中 Al、Ce 的原子比接近于 4:1，因此可以确定 AZ91D 中的针状相为 Al、Ce。总的来说，相比于粗晶 Mg-Ce 中间合金，细晶 Mg-Ce 中间合金对 AZ91D 有更显著的变质效果。

图 5 针状 AZ91D 镁合金的拉伸强度和延伸率

图 6 为 AZ91D 变质的维氏硬度测试平均值 (a) 未变质；(b) 粗晶 Mg-Ce 变质；(c) 细晶 Mg-Ce 变质。由图 6 可知，经粗晶处理后 AZ91D 的维氏硬度有明显提升。加入粗晶 Mg-Ce 的 AZ91D 维氏硬度由 55.4 HV 上升至 99.6 HV，加入细晶 Mg-Ce 的 AZ91D 的维氏硬度上升至 106.5 HV。相比而言，经细晶 Mg-Ce 变质的 AZ91D 的维氏硬度提升更为明显，相较于粗晶 Mg-Ce 中间合金变质的 AZ91D，维氏硬度提高了 6.92%。

2.4 拉伸断口形貌观察

图 7 为不同变质条件下 AZ91D 拉伸断裂口的显微形貌 (a) 未变质；(b) 粗晶 Mg-Ce 变质；(c) 细晶 Mg-Ce 变质。

2.5 AZ91D 的耐腐蚀性能

图 8 是不同变质条件下的 AZ91D 腐蚀速率柱状图 (a) 未变质；(b) 粗晶 Mg-Ce 变质；(c) 细晶 Mg-Ce 变质。未变质的 AZ91D 的腐蚀速率为 1.005 ×10⁻³ mg·h⁻¹·cm⁻²，
加入3%的粗晶Mg-Ce的AZ91D的腐蚀速率为0.1365×10^{-6} mg·h^{-1}·cm^{-2}，加入3%的细晶Mg-Ce的AZ91D的腐蚀速率为0.076×10^{-6} mg·h^{-1}·cm^{-2}。由图8可以直观地看出，加入粗晶Mg-Ce后AZ91D的腐蚀速率显著降低，而加入细晶Mg-Ce的AZ91D腐蚀速率进一步降低，两者相比，后者的腐蚀速率降低了44.62%。细晶Mg-Ce可以更显著地增强AZ91D的耐腐蚀性能。

图7 AZ91D拉伸试样断口的SEM图
Fig. 7 SEM fractographs of AZ91D tensile samples

图8 AZ91D的腐蚀速率
Fig. 8 Corrosion resistance of AZ91D samples

图9是不同变质条件下的AZ91D的腐蚀形貌图(a)未变质；(b)粗晶Mg-Ce变质；(c)细晶Mg-Ce变质。由图9可知，未变质AZ91D的腐蚀程度较大，腐蚀表面结构比较疏松，经粗晶Mg-Ce变质的AZ91D的腐蚀表面结构变得比较致密，而细晶Mg-Ce变质的AZ91D的腐蚀表面结构也较致密，但与图9(b)略有差异。

图10为不同变质条件下的AZ91D与腐蚀液的静态接触角(a)未变质；(b)粗晶Mg-Ce变质；(c)细晶Mg-Ce变质。由图10可知，未经变质的AZ91D与腐蚀液的接触角为61.5°，经过粗晶Mg-Ce变质的AZ91D与腐蚀液的接触角为79.2°，说明AZ91D与腐蚀液的润湿性大幅减弱；而经过细晶Mg-Ce变质的AZ91D的接触角增加到82.7°，表明AZ91D与腐蚀液的润湿性进一步减弱。细晶Mg-Ce中间合金可以更大程度地减弱AZ91D与腐蚀液之间的润湿性。

图10 不同条件下AZ91D与腐蚀液的静态接触角
Fig. 10 Contact angle the AZ91D under different condition

由上述可知，细晶Mg-Ce变质的AZ91D耐腐蚀性能要优于粗晶Mg-Ce变质的AZ91D。

3 讨论

3.1 细晶Mg-Ce中间合金作用机理分析

经过滚筒喷锌之后，Mg-Ce中间合金中的Mg,Ce尺寸明显变小，晶界增多，晶粒表面原子能量高，因此其熔化所需能量低，对于熔化与分解更为有利，使得Ce元素在AZ91D熔体中的扩散速度加快，且分布更均匀，从而增强抗裂纹效果。Ce在AZ91D熔体中会发生如下反应：

\[
4\text{Al} + \text{Ce} \rightarrow \text{Al}_2\text{Ce}
\]

Al,Ce相的熔点较高，为1250℃，因此它在AZ91D凝固时首先析出，但是由于它与α-Mg基体和β-Mg,Ce相均不具有共格关系(α-Mg为密排六方，β-Mg,Ce为体心立方)，Al,Ce相为体心四方结构，较难作为凝固时的异质形核核心。但它会通过以下途径对AZ91D起到增强作用：

(1) 在合金凝固的过程中细小的Al,Ce会吸附在α-Mg晶粒周围并阻碍其长大，从而细化镁合金晶粒。细晶Mg-Ce变质的AZ91D中Al,Ce尺寸更小，且分布更为弥散，因此抗裂纹效果更好。

(2) Al,Ce相的强度和硬度均较高，并且由于Al,Ce相是合金中原位生成的，其与母体界而结合良好，因此可以将其看作原位自生增强相。在AZ91D试样的拉伸过程中，应力从较软的α-Mg基体传递到较硬的Al,Ce相上时，会对较软的基体起到保护作用，从而通过载荷的传递提高合金的强度。除此之外，生成的Al,Ce相可阻碍位错运动，而产生钉扎作用，从而提高合金的强度。细晶Mg-Ce变质的AZ91D由于Al,Ce的尺寸更小，数目更多，分布更为均匀，承受外力时可以将应力分散到更多的硬质点上，从而减小应力集中程度，因此，细晶Mg-Ce变质的AZ91D力学性能更好。

(3) 相比于粗晶Mg-Ce，细晶中间合金变质的AZ91D由
于式(1)的反应更加容易进行。镁合金中固溶 Al 的含量势必会进一步降低[22]，对 δ 相的形成影响更大，δ 相的尺寸和数量进一步变小[22]。一方面，这些 δ 相生成细颗粒状弥散分布，大部分分布于晶界处，对晶界起强化作用；另一方面，这些弥散分布的 δ 相少量分布于晶粒内部，对基体合金也能起到一定程度强化作用。

3.2 细晶 Mg-Ce 变质 AZ91D 腐蚀机理分析

相比于 α-Mg、β-Mg₆Al₁₃、α-Mg 的腐思电位更高[22]，因此两者可以组成原电池，其中 α-Mg 为阳极，β-Mg₆Al₁₃ 为阴极。β-Mg₆Al₁₃ 会促使 α-Mg 的腐蚀，使得腐蚀液中的 Al 元素浓度升高，导致 AZ91D 的腐蚀速率下降。与此同时，新生成的 Al,Ce 相可以作为新的阳极从而减缓 α-Mg 的腐蚀[22]。因此，细晶 Mg-Ce 中间合金变质的 AZ91D 的腐蚀速率更低。

反映润湿性好坏的一个指标是接触角，接触角越大则润湿性越不好，腐蚀速率也越低，反之亦然。由于腐蚀电位的不同，使得 AZ91D 在处于腐蚀液的环境中时，其中的 Mg₆Al₁₃ 相为腐蚀液基。如图 11(a)所示，未变质的 AZ91D 中的 Mg₆Al₁₃ 呈小块状和棒状分布，尺寸较大且数量较少。Mg₆Al₁₃ 与腐蚀液的接触面积相对较小，使得腐蚀液不易于和试样表面接触，因此试样表面与腐蚀液的接触角变大，润湿性变差，造成腐蚀速率较高。如图 11(b)所示，加入细晶或细晶 Mg-Ce 中间合金后，AZ91D 中的 Mg₆Al₁₃ 变为细颗粒状甚至细小的点状，其表面积增加，这增加了其与腐蚀液的接触面积，腐蚀液相对容易于和试样表面接触。因此，试样表面与腐蚀液的接触角减小，润湿性变好，腐蚀速率降低。两者相比，加入细晶 Mg-Ce 中间合金后，AZ91D 的腐蚀速率更低。图 10 的接触角测量结果也说明了细晶 Mg-Ce 变质 AZ91D 的耐腐蚀性较好。

![图 11 不同变质条件下 AZ91D 的腐蚀机理示意图](image)

图 11 Schematic diagram of AZ91D corrosion mechanism under different modification conditions: (a) without modification; (b) modification

4 结论

(1) 采用细晶喷铸，获得了细晶 Mg-Ce 中间合金，其中 Mg₆Ce 相的平均尺寸由 50 μm 下降至 10 μm，相比于粗晶 Mg-Ce 中间合金，组织显著细化。

(2) 采用细晶或者细晶 Mg-Ce 中间合金均能有效改善 AZ91D 的组织并提高力学性能。相比粗晶 Mg-Ce 中间合金变质的 AZ91D，采用细晶 Mg-Ce 中间合金变质的 AZ91D 性能进一步提升，抗拉强度提高了 5.23%，延伸率提高了 15.14%，维氏硬度提高了 6.92%，腐蚀速率为降低了 44.62%。因此，铜模喷铸是改善 Mg-Ce 中间合金变质效果的有效手段。

参考文献

（责任编辑 汪小文）