文章摘要
郜雪松,罗锋,杨叶华,龚兴厚,胡涛,吴崇刚.杂多酸掺杂质子交换膜的制备、结构及性能[J].材料导报,2017,31(1):30-42
杂多酸掺杂质子交换膜的制备、结构及性能
Heteropolyacid-doped Proton-exchange Membranes:Preparation, Structure and Properties
  
DOI:10.11896/j.issn.1005-023X.2017.01.005
中文关键词: 质子交换膜 杂多酸 掺杂 质子传导性 流失率
英文关键词: proton-exchange membrane, heteropolyacid, doping, proton conductivity, running-off rate
基金项目:
作者单位
郜雪松 湖北工业大学绿色轻工材料湖北省重点实验室, 武汉 430068
绿色轻质材料与加工湖北工业大学协同创新中心, 武汉 430068
湖北工业大学材料与化学工程学院, 武汉 430068 
罗锋 湖北工业大学材料与化学工程学院, 武汉 430068 
杨叶华 湖北工业大学材料与化学工程学院, 武汉 430068 
龚兴厚 湖北工业大学绿色轻工材料湖北省重点实验室, 武汉 430068
绿色轻质材料与加工湖北工业大学协同创新中心, 武汉 430068
湖北工业大学材料与化学工程学院, 武汉 430068 
胡涛 湖北工业大学绿色轻工材料湖北省重点实验室, 武汉 430068
绿色轻质材料与加工湖北工业大学协同创新中心, 武汉 430068
湖北工业大学材料与化学工程学院, 武汉 430068 
吴崇刚 湖北工业大学绿色轻工材料湖北省重点实验室, 武汉 430068
绿色轻质材料与加工湖北工业大学协同创新中心, 武汉 430068
湖北工业大学材料与化学工程学院, 武汉 430068 
摘要点击次数: 3434
全文下载次数: 999
中文摘要:
      作为含有多金属氧酸Keggin分子构型的固体强酸,杂多酸(HPAs)具有优异的吸水性、质子传导性(cp)、机械、热及化学稳定性。HPA掺杂陶瓷或聚合物质子交换膜(PEMs)可以有效提高复合PEMs的亲水性、cp、燃料阻隔性、机械、热及化学稳定性,同时显著降低其cp及燃料阻隔性的温度与湿度依赖性。当HPA掺杂陶瓷时,两者之间的氢键作用导致HPA在基体中的流失率低、分散性强且掺杂量高,此时复合PEMs的cp(10-1 S/cm数量级)较基体PEMs(10-3~10-2 S/cm)大幅升高;而当HPA掺杂磺化聚合物时,两者之间的静电排斥力造成HPA在基体中的流失率高、分散性差且掺杂量低,此时复合PEMs的cp(10-1 S/cm数量级)较基体PEMs(10-2~10-1 S/cm)仅小幅升高。为了有效降低HPA在聚合物基体中的流失率,可以采用聚合物膜“三明治”状包覆复合PEMs、盐化HPA、改性基体或通过第三组分负载HPA以分别在HPA与基体或负载之间形成氢键或静电引力等手段;对于HPA的负载改性,由于陶瓷或聚合物负载在基体中易团簇,相应地HPA在基体中的分散性与掺杂量并未提高。有时采用HPA与吸水性较强的磷酸共掺杂陶瓷基体或负载,以协同提高复合PEMs的cp,然而效果并不显著。以上各种结构的HPA掺杂PEMs通常由溶液浇铸法、自组装法、溶胶-凝胶法及浸润法等制备;不同方法往往相互关联,即制备过程可能涉及两种或3种方法的耦合使用。改性HPA或其负载以显著提高HPA在磺化聚合物基体中的分散性与掺杂量,借此构建全新、高效的质子传输通道形态以实现复合PEMs的超高cp(100 S/cm数量级),是今后PEMs技术的重点发展方向之一。
英文摘要:
      As a strong solid-acid with a Keggin molecular-configuration of polyoxometalate, heteropolyacids (HPAs) exhibit superior hygroscopy, proton conductivity (cp), as well as mechanical, thermal and chemical stabilities. Doping of ceramics or polymers with an HPA endows the resulting composite proton-exchange membranes (PEMs) with efficiently improved hydrophily, cp, fuel barrier property, as well as mechanical, thermal and chemical stabilities, and also the considerably decreased dependencies of their cp and fuel barrier property on temperature and humidity. When HPA is doped with ceramics, the hydrogen bonding between the two components results in a low rate of the HPA running-off, high dispersion and high doping capacity of the HPA in the matrix, and the cp of the composite PEMs(10-1 S/cm) is significantly enhanced compared to that of the matrix PEMs(ca.10-3-10-2 S/cm). When HPA is doped with sulfonated polymers, the electrostatic repulsion between the two components leads to more HPA run-off, much lower dispersion and low doping capacity of the HPA in the polymeric matrix, and the cp of the composite PEMs(10-1 S/cm) is only slightly higher than that of the matrix PEMs (ca. 10-2-10-1 S/cm). To reduce the running-off rate of an HPA from polymeric matrices, different approaches can be employed, such as use of sandwiching polymer membranes to protect the composite PEMs, salination of the HPA, modification of the matrices or support of the HPA on the third component to form hydrogen bonding/electrostatic attractions between the HPA and the matrices or the support. For the modification of the HPA support, the dispersion and doping capacity of the HPA are not improved in the matrices because the ceramic or polymeric support tends to form cluster within the matrices. Occasionally, an HPA and hygroscopic phosphoric-acid are jointly employed to dope ceramic matrices or supports to synergistically enhance the cp of composite PEMs, which has no obvious effect. The aforementioned HPA-doped PEMs of various structures generally are prepared by solution-casting, self-assembly, sol-gel and infiltration methods, and a preparation process possibly involves two or three types of methods. To modify an HPA or its support for higher dispersion and doping capacity of the HPA within sulfonated-polymer matrices, and construct an original, efficient proton-transport channel configurations to accomplish an ultrahigh cp (100 S/cm) for composite PEMs, is one of the key future development directions for the PEMs technology.
查看全文   查看/发表评论  下载PDF阅读器
关闭
文章摘要
  
DOI:
中文关键词: 
英文关键词: 
基金项目:
摘要点击次数:
全文下载次数:
中文摘要:
      
英文摘要:
      
  查看/发表评论  下载PDF阅读器
关闭