文章摘要
李恒月,龚辰迪,黄可卿,阳军亮.基于印刷技术制备钙钛矿太阳电池[J].材料导报,2018,32(9):1385-1400
基于印刷技术制备钙钛矿太阳电池
A Review on the Fabrication of Perovskite Solar Cells via Printing Techniques
  
DOI:10.11896/j.issn.1005-023X.2018.09.001
中文关键词: 钙钛矿 印刷技术 太阳电池
英文关键词: perovskite, printing techniques, solar cells
基金项目:国家自然科学基金(51673214);国家重点研发计划纳米科技重点专项(2017YFA0206600)
作者单位E-mail
李恒月 中南大学物理与电子学院先进材料超微结构与超快过程研究所,长沙 410083 junliang.yang@csu.edu.cn 
龚辰迪 中南大学物理与电子学院先进材料超微结构与超快过程研究所,长沙 410083  
黄可卿 中南大学物理与电子学院先进材料超微结构与超快过程研究所,长沙 410083  
阳军亮 中南大学物理与电子学院先进材料超微结构与超快过程研究所,长沙 410083 junliang.yang@csu.edu.cn 
摘要点击次数: 3458
全文下载次数: 824
中文摘要:
      近年来,钙钛矿太阳电池(Perovskite solar cells, PSCs)以其优异的光电转换性能和溶液制备成本低等优势受到了科研工作者和产业界人士的广泛关注,被认为是新一代薄膜太阳电池技术中的杰出代表。目前,钙钛矿太阳电池的光电转换效率(Power conversion efficiency, PCE)已经从2009年报道的3.8%迅速提升到现在的22.7%,达到商业化多晶硅、碲化镉、铜铟镓硒等太阳电池水平。 目前,溶液旋涂法是实验室制备钙钛矿太阳电池的常用方法。虽然旋涂法操作简单、成膜速度快、重复性好,然而该法缺点也很明显:(1)材料浪费严重;(2)不具备图案化功能;(3)不适用于工业化的连续生产。因此,溶液旋涂技术无法满足钙钛矿太阳电池今后大规模工业化生产所需的大面积、低成本等制造要求。从实验室小面积器件制备转变到可大面积的产业化制备以及降低钙钛矿太阳电池的生产成本,将是钙钛矿太阳电池产业化过程中的一个重要课题。 在钙钛矿太阳电池的制备方法中,印刷技术因具有材料利用率高、成本低、工艺效率高、可大面积制备、适用于柔性基底等特点而备受关注。基于印刷工艺制备的小面积钙钛矿太阳电池效率已接近20%,大面积(>10 cm2)钙钛矿太阳电池效率在10%~16%之间,大面积柔性钙钛矿太阳电池效率为10%左右。然而,从实验室小器件转变到大规模工业化生产依旧存在许多问题亟待解决。例如:(1)为了加快钙钛矿材料的结晶,在钙钛矿薄膜退火过程中通常采用溶剂工程或惰性气体辅助的方式,这将导致印刷的大面积钙钛矿薄膜质量难以控制以及重复性降低;(2)退火过程中较高的退火温度会限制柔性基底和界面材料的选择;(3)钙钛矿材料本身对空气湿度敏感,需提高钙钛矿层制备过程的环境适应性,降低制备工艺本身对环境条件的限制等。基于此,完善钙钛矿太阳电池的印刷制备工艺并使其适用于工业化生产显得十分重要。 本文综述了基于喷墨打印(Inkjet-printing)、喷涂(Spray-coating)、狭缝涂布(Slot-die coating)、刮涂(Doctor-blading)等印刷技术制备钙钛矿太阳电池的研究进展,并对印刷技术制备钙钛矿太阳电池的前景进行了展望。
英文摘要:
      Perovskite solar cells (PSCs) have attracted much attention during the past years due to their excellent photovoltaic properties and low-cost solution processing. The power conversion efficiency (PCE) has been rapidly increased to 22.7% since the first report of 3.8% in 2009, which approaches the levels of commercial polycrystalline silicon solar cells, CdTe solar cells and CIGS solar cells. Spin-coating is commonly used to fabricate PSCs in the labs, but it can’t meet the requirements for large-scale and low-cost process. It is simple to operate the spin-coating process with good repeatability. However, spin-coating still possesses some shortcomings, including serious waste of materials, only producing film without patterns, incapable of continuous fabrication. Therefore, it cannot match with the production of industrialization with large area and high throughout. It is still a big challenge to transfer the fabrication from lab-scale to large-scale industrialization with low cost and high throughout. Printing techniques show many advantages, e.g. high material utilization, low cost, large area, high throughout and matching with flexible substrate, and they have been used to fabricate PSCs. The PCE approaching 20% was achieved in printed, small-area PSCs, and numerous efforts have been made to improve printed large-area PSCs with PCE between 10% and 16%. Furthermore, it has already achieved printed, flexible PSCs with PCE of about 10%. There are still many issues to be solved for accelerating the industrialization. Ⅰ. Solvent engineering and gas-assisted treatment, commonly used in spin-coating process for producing high-quality perovskite films, are not matchable with printing process, resulting in the poor morphology and the low reproducibility in printed perovskite film. Ⅱ. The high-temperature annealing process would restrict the use of flexible substrate and the choice of interfacial materials. Ⅲ. Perovskite materials are sensitive to humidity, and it is necessary to improve their environment adaptability and reduce the cost. Hence, it is very important to optimize printing techniques for fabricating large-area PSCs with high efficiency, high throughout and low cost. In this review, we summarize the research progress on PSCs fabricated via printing techniques, including inkjet-printing, spray-coating, slot-die coating, doctor-blading. Furthermore, we also discuss the challenges and prospects of potential commercial PSCs.
查看全文   查看/发表评论  下载PDF阅读器
关闭