文章摘要
陈子冲,方如意,梁初,甘永平,张文魁.锂硫电池硫正极材料研究进展[J].材料导报,2018,32(9):1401-1411
锂硫电池硫正极材料研究进展
Recent Progress in Sulfur Cathode for Li-S Batteries
  
DOI:10.11896/j.issn.1005-023X.2018.09.002
中文关键词: 锂硫电池 硫正极 复合材料 电化学性能
英文关键词: lithium-sulfur batteries, sulfur cathode, composite, electrochemical performance
基金项目:国家自然科学基金(21403196;51572240;51677170);浙江工业大学课堂教学改革项目(KG201603);2017年国家级大学生创新创业训练计划项目(201710337003)
作者单位E-mail
陈子冲 浙江工业大学材料科学与工程学院, 杭州 310014 512488142@qq.com,cliang@zjut.edu.cn,msechem@zjut.edu.cn 
方如意 浙江工业大学材料科学与工程学院, 杭州 310014  
梁初 浙江工业大学材料科学与工程学院, 杭州 310014  
甘永平 浙江工业大学材料科学与工程学院, 杭州 310014  
张文魁 浙江工业大学材料科学与工程学院, 杭州 310014 512488142@qq.com,cliang@zjut.edu.cn,msechem@zjut.edu.cn 
摘要点击次数: 4283
全文下载次数: 950
中文摘要:
      由化石燃料的大量使用导致的全球能源和环境问题日益严重,已对人们的生产和生活产生了明显的影响。开发利用储量丰富的清洁能源(如太阳能、水能和风能等)有望较好地解决全球能源和环境问题。由于这些清洁能源存在地域性、间歇性等特点,高效的能量转化和存储技术是实现清洁能源规模化利用的关键和基础。锂离子电池作为绿色环保的储能器件,已在手机、笔记本电脑、相机等便携电子产品中广泛使用。近年来,锂离子电池开始在电动汽车等动力电池领域得到应用。但是,由于其能量密度不够高,导致锂离子电池电动汽车续航短、充电频繁及购车成本高。由金属锂为负极和硫为正极组成的锂硫电池的能量密度(2 600 Wh·kg-1)远高于目前广泛使用的锂离子电池。此外,硫正极材料具有储量丰富、毒性低、价格便宜、环境友好等突出优点。因此,锂硫电池被认为是当前最具研究前景的高能量密度二次电池之一。 硫正极材料的本征导电性差、在充放电过程中存在较大的体积膨胀和收缩,储放锂过程中形成的多硫化锂易溶于电解液,使得锂硫电池的倍率性能、循环寿命和库伦效率等电化学性能离实际应用仍有较大距离。迄今为止,关于硫正极材料的研究工作,主要集中于如何提升其导电性、抑制或消除由多硫化锂的溶解引起的穿梭效应以及在反复的循环过程中保持电极材料微结构的稳定性等方面。 相关研究表明,将硫与不同形貌的碳材料复合构筑成具有特殊微观结构的硫/碳复合正极材料可显著提高其导电性、抑制多硫化锂的穿梭效应和减缓储放锂前后的体积变化,进而改善倍率性能、循环稳定性和充放电效率等。此外,在硫正极材料中引入异质元素掺杂碳材料、金属氧化物和导电集合物均可通过化学吸附实现对易溶解多硫化锂的有效吸附。将上述多种改性方法结合也可使硫正极材料具有优异的电化学储锂性能。 本文从锂硫电池的工作原理出发,总结了硫正极材料存在的主要问题,综述了近几年锂硫电池复合正极材料的研究进展,最后对锂硫电池正极材料的研究思路与发展趋势进行了分析和展望。
英文摘要:
      The global energy and environmental problems caused by the extensive use of fossil fuels have significantly impac-ted on the human’s production and livelihoods, which can be expected to well address via developing and utilizing various clean energy sources, such as solar energy, water energy and wind energy, etc. Efficient energy conversion and storage technologies are the key and basics of the large-scale use of clean energy due to their regional and intermittent characteristics. Lithium-ion batteries, as green energy storage devices, are widely used in mobile phones, laptops, cameras and other portable electronic devices. In recent years, lithium-ion batteries have begun to be applied in the field of power batteries such as electric vehicles. However, the electric vehicles suffer from inferior cruise-ability, frequent charging and high cost because of their relatively low energy density. The energy density (2 600 Wh·kg-1) of lithium-sulfur batteries, composed of lithium metal as anode and sulfur as cathode, is much higher than that of state-of-the-art lithium-ion batteries. Additionally, the sulfur cathode material is abundant, nontoxic, cost effectiveness and environmental friendliness. Hence, lithium-sulfur batteries are considered as one of the most promising secondary batteries. However, the poor CE and limited cycle life, caused by the fundamental defects of sulfur cathode such as low ionic/electronic conductivities, large volumetric expansion and shuttle effect, hamper the widespread application of Li-S battery. So far, considerable studies have focused on enhancing the conductivity, inhibiting or eliminating the shuttle effect and stabilizing the microstructure of electrode material during repeated cycles. It has been demonstrated that the S/C composite cathode materials with special microstructure, prepared by compositing sulfur and carbon with different morphology, exhibit significantly improved conductivity, decreased shuttle effect of lithium polysulfide and less volume change during lithium intercalation/deintercalation. These improvements lead to better rate performance, cycling stability and charge-discharge efficiency. Moreover, the introduction of heterogeneous element-doped carbon materials, metal oxides and conductive polymers in the sulfur cathode material can achieve effective chemical adsorption of lithium polysulfide. Excellent electrochemical lithium storage performance of sulfur cathode can also be achieved by the combination of these various modification me-thods. In this review, the main problems and recent research progress in sulfur cathode materials are summarized and commented upon based on the principle of lithium-sulfur batteries. Meanwhile, it also gives brief suggestions and outlooks on the future research directions in lithium-sulfur batteries.
查看全文   查看/发表评论  下载PDF阅读器
关闭