纳米 TiO₂-Cu₂O 可见光下光催化降解活性艳红及其机理研究*

韩承辉^{1,2},李智渝¹,沈俭一²

(1 江苏城市职业学院城市科学系,南京 210036;2 南京大学化学化工学院,南京 210093)

摘要 采用钛酸丁酯水解和肼还原醋酸铜的方法制备出 TiO₂-Cu₂O 复合氧化物,研究了 TiO₂-Cu₂O 复合光 催化剂在可见光照射下光催化降解活性艳红 X-3B 的性能,考察了催化剂组成、催化剂投加量、溶解氧、H₂O₂ 等对光 催化反应的影响,探讨了 Cu₂O 及 TiO₂-Cu₂O 光催化降解有机污染物的机理。结果表明,由于 TiO₂ 和 Cu₂O 之间存 在协同作用,使得复合氧化物的活性比单一的 Cu₂O 高。Cu₂O 光催化的氧化物种为 · OH 和光生空穴。光生电子 (e⁻)还原吸附在 Cu₂O 表面上的氧,产生超氧阴离子,然后再进一步生成 · OH,光生空穴(h⁺)无法直接将吸附在 Cu₂O 表面的 OH⁻氧化成 · OH。

 关键词
 纳米 Cu₂O
 TiO₂-Cu₂O 复合氧化物
 活性艳红 X-3B
 光催化

 中图分类号:O643.3
 文献标识码:A

Photocatalytic Degradation of the Reactive Brilliant Red and Its Mechanism over Nano-sized TiO₂-Cu₂O Under Visible Irradiation

HAN Chenghui^{1,2}, LI Zhiyu¹, SHEN Jianyi²

(1 Department of City Science, Jiangsu City Vocational College, Nanjing 210036;2 School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093)

Abstract A series of TiO_2 - Cu_2O mixed oxides were prepared by the hydrolysis of titanium butoxide and reduction of copper acetate with hydrazine. The photocatalytic degradations of the reactive brilliant red X-3B over the TiO_2 - Cu_2O were investigated under the irradiation with visible light. The effects of composition, amount of catalyst and the diluted oxygen as well as H_2O_2 were studied. In addition, the photocatalytic degradation mechanism of organic compounds over the Cu_2O and TiO_2 - Cu_2O was discussed. The results showed that the complex oxides exhibited higher activity than single Cu_2O due to the synergetic effect between TiO_2 and Cu_2O . The oxidative species in Cu_2O were believed to be free radical \bullet OH and electric holes. \bullet OH free radicals were originated from the super oxygen anions, which were produced from the reduction of oxygen absorbed on the surface of Cu_2O by photoelectrons. The holes produced through light excitation could not oxidize OH^- to $\bullet OH$ directly.

Key words nano-sized Cu₂O, TiO₂-Cu₂O complex oxides, reactive brilliant red X-3B, photocatalysis

氧化亚铜是一种典型的 P 型半导体,带隙宽度为 1.9~ 2.2 eV,其价带上的电子可在可见光照射下跃迁到导带上。 1998年,Hara 等^[1]利用 Cu₂O 作光催化剂在可见光下将水分 解成 H₂和 O₂,表明 Cu₂O 在可见光下具有较好的光催化活 性,此后其光催化性能引起研究人员的广泛关注。目前, Cu₂O 被越来越多地用于光催化降解各类有机污染物^[2-10], 同时,研究人员对其光催化机理也进行了深入探讨。Tang Aidong 等^[2]利用所制备的 Cu₂O 光催化降解甲基橙,研究结 果表明 Cu₂O 光催化降解甲基橙的原因是 Cu₂O 被光激发产 生自由电子和空穴,其中空穴和 OH⁻作用产生•OH,从而 氧化降解甲基橙。李晓勤等^[7]利用电解法制备了纳米 Cu₂O,考察了其降解有机染料活性艳红的光催化性能,得出 纳米 Cu₂O 降解有机染料活性艳红 X-3B 的原因是 Cu₂O 可 以被可见光激发产生自由电子和空穴,空穴的强氧化性可用 来处理有机物染料废水。陈金毅等^[9]利用 Cu₂O 在可见光下 光催化降解亚甲基蓝,发现通入空气搅拌比采用机械搅拌降 解效果更为理想。研究人员认为氧供应越充分,催化剂反应 进行得越完全,这是因为分解有机物主要是空穴的氧化作 用。在光反应过程中,吸附在催化剂表面的氧通过俘获电子 形成过氧离子,阻止了电子与空穴的复合,提高了分解效率。 而通入空气搅拌则增加了催化剂与氧的接触量,从而加快了 光反应速度。

本研究利用制备的 TiO₂-Cu₂O 复合光催化剂,以钨灯作 为光源,在可见光下降解活性艳红 X-3B,考察光催化剂在可 见光照射下分解活性艳红的催化性能,研究催化剂组成、催 化剂投加量、溶液中氧、H₂O₂等对光催化反应的影响。在有 氧和无氧两种情况下,分别测定含有 TiO₂-Cu₂O 悬浮液在可 见光照射下的羟基自由基,结合 Cu₂O、TiO₂ 价带和导带的电

^{*} 江苏省高校自然科学基金(10KJB610009)

韩承辉:男,1969 年生,博士,副教授,研究方向为多项催化和污水处理研究 Tel:025-86496515 E-mail:hanch69@sina.com

极电位,研究羟基自由基产生的途径。本研究采用这种方法研究 Cu₂O 光催化机理,目前国内外鲜见报道。

1 实验

1.1 催化剂的制备

按照文献[6]制备一系列 TiO₂-Cu₂O 催化剂。以 TiO₂ 摩尔分数为 5%的 TiO₂-Cu₂O 复合氧化制备为例:称取 12 g 醋酸铜(分析纯),溶于 600 mL 水中,加入 3.2 mL 聚乙二醇 (400)(化学纯),将 0.5374 g 钛酸丁酯(分析纯)溶于适量无 水乙醇中,再滴加到醋酸铜溶液中,有白色溶胶产生,搅拌 30 min。加入 1.5 mL 5 mol/L NaOH,搅拌 10 min,然后加入 15 mL 5 mol/L 肼,于 12~14 ℃搅拌 15 min,有黄色沉淀产 生,过滤,用去离子水洗涤,直至中性,最后用无水乙醇和丙 酮各洗 2 次,抽干,于 200 ℃ 真空加热 3 h,制得 TiO₂摩尔分 数为 5%的样品,记为 5% TiO₂-Cu₂O。改变醋酸铜和钛酸丁 酯投加比例,可制得一系列不同 TiO₂ 摩尔分数的 TiO₂-Cu₂O 复合氧化物。

1.2 催化剂表征

用 Shimadzu XRD-6000 型 X 射线衍射仪测定 X 射线衍 射谱(XRD),Cu 靶,Ka 射线(λ =1.5418 Å),电压 40 kV,电 流 35 mA。

在日本 JEOL 公司 JSM 2100 型透射电镜上进行透射电镜(TEM)分析,操作电压 200 kV。

在北京普析通用公司 T-1901 型紫外可见分光光度计 (带积分球附件)上进行漫反射紫外-可见光谱扫描,以 BaSO₄ 作参比粉末,扫描范围 230~800 nm。

在 IRIS Intrepid 全谱直读 ICP 光谱仪(美国热电公司) 上进行电感耦合等离子体发射光谱(ICP)测定。

1.3 光催化反应

有氧光催化反应:将 250 mL 活性艳红溶液和一定量的 催化剂加入到 500 mL 玻璃容器中,通过小型增氧泵对溶液 通空气,在磁力搅拌情况下进行光催化反应。光源为 250 W 钨灯,放置于反应器上方 20 cm。每隔一定时间,取样,离心, 用 0.22 μm 滤膜过滤后,用紫外-可见分光光度计(TU-1901, 北京普析通用公司)于最大吸收波长(540 nm)处测量反应后 活性艳红的浓度。溶液中 COD 值用国标法测定(重铬酸钾 法,GB/T 11914-1989)。

无氧光催化反应:于 500 mL 玻璃容器中,加入 250 mL 活性艳红溶液,通入氮气 40 min 以去除溶液中的氧,之后加 入一定量催化剂,不断通入氮气,并在磁力搅拌的情况下进 行光催化反应。

1.4 羟基自由基的测定

采用邻二氮菲-Fe([])(Fe(phen)₃²⁺)分光光度法测定溶 液中的・OH^[11,12]:以邻二氮菲-Fe([])作捕捉剂与・OH 进 行反应,当溶液中存在・OH 时,橙红色的 Fe(phen)₃²⁺ (λ_{max} =508 nm)被氧化为无色的 Fe(phen)₃³⁺,这样通过分光 光度法就可测出被・OH 氧化的 Fe(phen)₃²⁺量,该量正比 于体系中产生的・OH的量,从而间接求得该反应体系中 ・OH的浓度。 有氧反应:在 200 mL 玻璃容器中,加入 100 mL 0.002 mol/L Fe(phen)₃²⁺溶液和 0.05 g 5%TiO₂-Cu₂O,不断磁力 搅拌,以 250 W 钨灯为光源,光照 10 min,取样,用 UV-Vis 分光光度计(TU-1901,中国)进行扫描分析。

无氧反应:在 200 mL 玻璃容器中,加入 100 mL 0.002 mol/L Fe(phen)₃²⁺溶液,通入氮气 40 min 以除去溶液中的 O_2 ,然后加入 0.05 g 5% TiO₂-Cu₂O,以 250 W 钨灯为光源, 光照 10 min,取样,用 UV-Vis 分光光度计(TU-1901,中国) 进行扫描分析。整个过程一直磁力搅拌并通氮气。

2 结果与讨论

2.1 催化剂表征

2.1.1 TEM

图 1 为 5% TiO₂-Cu₂O 的电子透射显微镜照片。从图 1 可见,5% TiO₂-Cu₂O 样品颗粒呈球形,粒径在 40 nm 左右。

图 1 5%TiO₂-Cu₂O的TEM图 Fig. 1 TEM image of 5%TiO₂-Cu₂O

2.1.2 XRD

从图 2 可见, Cu_2O 的衍射峰与 JCPDS 78-2076 一致, 没 有发现 Cu 和 CuO 的衍射峰。ICP 分析表明, 5% TiO₂-Cu₂O 样品含有 5. 2% TiO₂ (摩尔分数), 但 XRD 没有发现 TiO₂ 的 衍射峰,表明 TiO₂ 高度分散在 Cu_2O 里。纯 TiO₂ 为锐钛矿 相晶型 (JCPDS 21-1272)。

图 2 Cu₂O、5%TiO₂-Cu₂O 和 TiO₂ 的 XRD 图谱 Fig. 2 XRD patterns of Cu₂O, 5%TiO₂-Cu₂O and TiO₂

2.1.3 漫反射紫外-可见光谱

对样品 Cu₂O、5%TiO₂-Cu₂O 和 TiO₂ 进行漫反射紫外-

可见光谱扫描,结果见图 3。由图 3 可见,Cu₂O 和 5%TiO₂-Cu₂O 在 610 nm 处被激发,在可见光照射下可起光催化作 用,而 TiO₂ 则在 388 nm 处才能被激发,属于紫外光区。

图 3 Cu₂O、5%TiO₂-Cu₂O 和 TiO₂ 的漫反射紫外-可见光谱图

Fig. 3 UV-Vis diffuse reflectance spectra of Cu₂O, 5%TiO₂-Cu₂O and TiO₂

2.2 不同组成光催化剂的光催化活性

将 0.25 g 不同组成的 TiO₂-Cu₂O 复合氧化物加入到 250 mL、质量浓度为 100 mg/L 的活性艳红溶液中, 鼓空气。 反应 150 min 后, 活性艳红脱色率见图 4。

图 4 TiO₂-Cu₂O 组成对活性艳红降解率的影响 Fig. 4 Photocatalytic degradation of reactive brilliant red X-3B as a function of composition of TiO₂-Cu₂O

从图 4 可见, Cu₂O 与 TiO₂ 复合后,活性艳红降解率增加,表明 Cu₂O 与 TiO₂ 复合后能提高催化剂的光催化活性。 其中 TiO₂ 摩尔分数为 5%的催化剂活性最高,活性艳红降解 率达 91%。TiO₂ 与 Cu₂O 复合后催化活性的提高是一种协 同效应,即在可见光的照射下, Cu₂O 被激发,由于其光生电 子所处的导带电位(-1.54 eV)比 TiO₂ 的导带电位(-0.41 eV)更低,所以光生电子由 Cu₂O 转移到 TiO₂ 上,抑制了电 子-空穴的复合,提高了量子效率,从而使光催化活性增 强^[10,13]。当 TiO₂ 含量增加时, TiO₂-Cu₂O 复合氧化物活性 下降,主要是因为在可见光区 TiO₂ 不被激发, 而 Cu₂O 含量 下降,光子利用率降低。

2.3 催化剂投加量对光催化活性的影响

图 5 为催化剂投加量对光催化活性的影响。由图 5 可 知,随着催化剂用量的增加,催化剂对光的利用率增大,能产 生更多的光生电子-空穴对,进而加快了反应速度。然而当催 化剂的使用量达到 1.0 g/L 时,随着催化剂用量的增加,目 标污染物降解率反而下降,这可能是由于催化剂使用量过多 导致催化剂颗粒对光的散射增大,加大光能损失^[14,15]。

图 5 催化剂投加量对光催化活性的影响

Fig. 5 The effect of catalyst dosage on photocatalytic activity

2.4 溶液中氧对光催化反应的影响

以 5%TiO₂-Cu₂O 为催化剂,在有氧和无氧条件下进行 光催化反应,考察溶液中的氧对光催化活性的影响,结果见 图 6。

由图 6 可见,在无氧情况下活性艳红 150 min 去除率不到 13%,这可能是在通 N₂ 情况下,溶液中缺乏氧,光生电子 无法通过还原溶液中的氧产生•OH,而 Cu₂O 空穴的氧化能 力比较弱,其价带上空穴的电极电位只有 0.46 eV(pH= 7)^[10],无法直接氧化 H₂O 产生•OH,同时也很难直接氧化 吸附在催化剂表面上的活性艳红。

2.5 H₂O₂ 对光催化活性的影响

在 250 mL 100 mg/L 的活性艳红 X-3B 溶液中加入 0.02 mL 30%H₂O₂(AR),比较了仅加 H₂O₂,加 H₂O₂+5% TiO₂-Cu₂O 和仅加 5%TiO₂-Cu₂O 三种情况下活性艳红的脱 色率,实验结果如图 7 所示。

从图 7 可知,在无催化剂存在下,H₂O₂ 对活性艳红的降 解几乎没有影响,而有催化剂存在时,H₂O₂ 的加入显著提高 了光催化反应速度,仅 15 min X-3B 的脱色率就达 96%,说 明 H₂O₂ 具有辅助催化作用。Dionysiou 等^[16]认为 H₂O₂ 提 高光催化氧化效率主要是由于其可以与催化剂表面的光生 电子结合,不仅能够抑制空穴-电子对的复合,而且还可以产 生强氧化性的•OH。

在 250 mL 含有 100 mg/L 的活性艳红 X-3B 和 0.25 g

5%TiO₂-Cu₂O的体系中分别加入不同量 30% H₂O₂,测定光 催化降解率,实验结果如图 8 所示。

图 7 H₂O₂ 对光催化降解活性艳红的影响

从图 8 中可见,加入 0.02 mL H₂O₂ 催化效果最好,表明 H₂O₂ 加入量有一最佳值。相关研究指出^[16,17],投加过量的 H₂O₂ 会降低促进效果,甚至抑制光催化剂对污染物的降解, 其原因在于 H₂O₂ 浓度较高时,H₂O₂ 不仅可以与电子结合 而且还消耗空穴和・OH,h⁺和・OH 的减少必然导致光催 化反应速率的降低。

图 9 反映了 H_2O_2 对降低活性艳红 X-3B 溶液 COD 值的 影响。从图 9 中可见, H_2O_2 的加入不仅对脱色率有促进作 用,其对有机物完全矿化指标 COD 的降低也有促进作用,有 利于活性艳红的矿化。

2.6 Cu₂O光催化产生羟基自由基的途径

图 10 反映了在有氧和无氧两种情况下,溶液中

Fe(phen)₃²⁺浓度的变化情况。从图 10 可见,在无氧情况下 Fe(phen)₃²⁺的浓度几乎没有变化,而在有氧情况下 Fe(phen)₃²⁺的浓度有明显下降,表明溶液中存在氧气时,已 经产生•OH,而在无氧条件下没有产生•OH。

- 图 10 在有氧和无氧条件下反应后邻二氮菲-Fe(Ⅱ)的 紫外-可见分光光谱图
 - Fig. 10 UV-Vis spectra of $Fe(phen)_3^{2+}$ after the reaction in N₂ and O₂

图 11 Cu₂O、TiO₂ 的导带和价带的电极电位图 (pH=7.0)^[10]

Fig. 11 Energetic diagram of Cu₂O-TiO₂ heterojunction(pH=7.0)^[10]

从图 11 可知,在溶液 pH=7 时,Cu₂O 和 TiO₂ 的价带电 位分别为 0.46 eV 和 2.79 eV(vs NHE,相对于标准氢电极 的电位),而 $E(\cdot OH/OH^-)=2.39$ V。从能带理论上看,半 导体价带的能级代表半导体空穴的氧化电位的极限,任何氧 化电位在半导体价带位置以上的物质原则上都可以被光生 空穴氧化;同理,任何还原电位在半导体导带以下的物质,原 则上都可以被光生电子还原。反之,则不能发生氧化还原反 应。对 TiO₂ 来说,

 $\Delta_{\rm r}G_{\rm m} = -nF[E(\bar{z}\bar{\chi}) - E(\bullet OH/OH^{-})]$

=-96500×(2.79-2.39)=-38.6 kJ/mol<0 (1) 所以 TiO₂ 的光生空穴能直接氧化 OH⁻生成・OH。

对 Cu₂O 来说,

 $\Delta_{\rm r}G_{\rm m} = -nF[E(空穴) - E(\cdot OH/OH^{-})]$

=-96500×(0.46-2.39)=186.2 kJ/mol>0 (2) 所以 Cu₂O 的光生空穴不能直接氧化 OH⁻生成・OH。

当溶液中有氧存在时,在 Cu₂O 的悬浮液中,•OH 是通 过光生电子还原预先吸附在 Cu₂O 表面的 O₂ 产生的,即:

$$e^{-} + O_2(ads) \rightarrow O_2^{-}(ads)$$
 (3)

•
$$O_2^-(ads) + H^+ \rightarrow HO_2 \bullet$$
 (4)

(5)

 $2\mathrm{HO}_2 \bullet \to \mathrm{O}_2 + \mathrm{H}_2\mathrm{O}_2$

 $H_2O_2 + \bullet O_2^{-}(ads) \rightarrow \bullet OH + OH^{-} + O_2$ (6)

 $E(O_2/ \cdot O_2^-) = -0.33 V^{[18]}, Cu_2O 导带的电势是$ -1.54 eV,由它产生的光生电子具有很强的还原性,从热力学角度分析,它可以将氧气还原生成超氧阴离子,当光生电子诱发了反应(3)后,进而发生反应(4)-(6),产生羟基自由基·OH。·OH 是一个活性物种,它无论在吸附相还是在溶液相都具有很强的氧化性,能氧化很多有机物,是光催化过程中氧化有机物的主要氧化剂。因此 Fe(phen)₃²⁺ 被·OH氧化,浓度明显下降。

当溶液中无氧时,反应(3)-(6)无法进行,而 Cu₂O 的光 生空穴不能将 OH⁻氧化为•OH,所以在无氧条件下,Cu₂O 悬浮液不能产生•OH。同样,也不能直接将 Fe(phen)₃²⁺氧 化为 Fe(phen)₃³⁺。因此在无氧条件下 Fe(phen)₃²⁺浓度基 本不变,这与实验结果一致。

3 结论

(1)TiO₂-Cu₂O 系列光催化剂在可见光照射下可光催化 降解活性艳红 X-3B。Cu₂O 和 TiO₂ 复合后其光催化活性比 单独 Cu₂O 光催化效果好,其中 TiO₂ 加入量为 5%(摩尔分 数)的光催化活性最好。Cu₂O 与 TiO₂ 之间发生协同作用, 抑制光生电子-空穴的复合。

(2) Cu₂O 光催化的氧化物种为•OH和光生空穴。 •OH产生的途径为:通过光生电子还原吸附在Cu₂O表面上 的氧,产生超氧阴离子,然后再进一步生成•OH。光生空穴 h⁺虽然具有一定的氧化能力^[6],但氧化能力较弱,无法直接 将 OH⁻氧化成•OH。

(3)溶液中 O₂ 是 TiO₂-Cu₂O 降解活性艳红的关键因素。 由于 Cu₂O 产生的空穴的氧化能力较弱,在无氧条件下,无法 直接将 OH⁻氧化成•OH。在 O₂ 存在时,光生电子可将吸 附在催化剂表面的 O₂ 还原成超氧阴离子,再生成具有强氧 化性羟基自由基,使得活性艳红降解,COD 降低。

(4)溶液中加入少量 H₂O₂,能显著提高光催化活性。 H₂O₂ 作为电子受体,其与电子结合的能力要强于 O₂,可以 与催化剂表面的光生电子结合,不仅能够抑制空穴-电子对的 复合,还可产生强氧化性的•OH。

参考文献

- Hara M, Kondo T, Komoda M, et al. Cu₂O as a photocatalyst for overall water splitting under visible light irradiation [J]. Chem Commun, 1998(3):357
- 2 Tang A, Xiao Y, Ouyang J, et al. Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes[J]. J Alloys Compd, 2008, 457(1-2): 447
- 3 Li J L, Liu L, Yu Y, et al. Preparation of highly photocatalytic active nano-size TiO₂-Cu₂O particle composites with a novel electrochemical method [J]. Electrochem Commun, 2004,6(9):940
- 4 Zhou Bo, et al. Hydrothermal preparation and visible photo-

catalytic activity of flower-like $\mathrm{Cu}_2\mathrm{O}/\mathrm{Cu}$ nanocomposites

[J]. Acta Phys-Chem Sinica, 2009, 25(9):1841

周波,等.花状 Cu₂O/Cu 的水热合成及其光催化性能[J]. 物理化学学报,2009,25(9):1841

- 5 Chen Jinyi, et al. Synthesis and visible light photocatalytic activity of cross-linked sodium rectorite/Cu₂O nanocomposites[J]. Acta Phys-Chem Sinica,2011,27(4):932 陈金毅,等. 交联累托石/Cu₂O纳米复合材料的制备及可见 光催化性能[J]. 物理化学学报,2011,27(4):932
- 6 Han C H, Li Z Y, Shen J Y. Photocatalytic degradation of dodecylbenzenesulfonate over TiO₂-Cu₂O under visible irradiation[J]. J Hazard Mater, 2009, 168(1):215
- 7 Li Xiaoqin, Fang Tao, Luo Yongsong, et al. Preparation of Cu₂O nanowhiskers with electrochemical method and its photocatalytic characterization[J]. Chemistry,2006(4):290 李晓勤, 方涛, 罗永松, 等. 电解法制备纳米 Cu₂O 及其光 催化性能的研究[J]. 化学通报,2006(4):290
- 8 Liang Yuning, Huang Zhi, Qin Sihan, et al. Study on the photocatalytic degradation of p-nitrophenol in water by using cuprous oxide[J]. Techniques Equipment Environ Pollution Control, 2003, 4(10):36
 梁宇宁,黄智,覃思晗,等. Cu₂O光催化降解水中对硝基 苯酚的研究[J]. 环境污染治理技术与设备, 2003, 4(10):36
- 9 Chen Jinyi, Liu Xiaoling, et al. Photocatalytic decoloration and degredation of methylene blue in Cu₂O suspension[J]. J Central China Normal University:Nat Sci,2002,36(2):200 陈金毅,刘小玲,等. 纳米氧化亚铜可见光催化分解亚甲基 蓝[J]. 华中师范大学学报:自然科学版,2002,36(2):200
- 10 Bessekhouad Y, Robert D, Weber J V. Photocatalytic activity of $Cu_2 O/TiO_2$, Bi_2O_3/TiO_2 and $ZnMn_2O_4/TiO_2$ heterojunctions[J]. Catal Today,2005,101(3-4):315
- 11 Chen Jian, et al. Influence of phosphate buffer solution on 10-phenanthroline-Fe²⁺ assay of hydroxyl radical[J]. J Molecular Sci,2012,28(4):350
 陈健,等. 磷酸盐缓冲溶液对邻二氮菲-Fe²⁺氧化法测定羟 基自由基的影响[J]. 分子科学学报,2012,28(4):350
- 12 Cheng Lihua, Huang Junli, Ni Fuxiang. Generation kinetics of hydroxyl radicals by Fenton's reagent[J]. Techniques Equipment Environ Pollution Control,2003,4(5):12 程丽华,黄君礼,倪福祥. Fenton 试剂生成・OH 的动力学 研究[J]. 环境污染治理技术与设备,2003,4(5):12
- 13 Senevirathna M K I, et al. Water photoreduction with Cu₂O quantum dots on TiO₂ nano-particles[J]. J Photochem Photobiol A: Chem, 2005, 171(3):257
- 14 An Xingcai, Chen Zuoyan, Han Lijuan, et al. Experimental research on photocatalytic degradation of phenol by V-N codoped TiO₂[J]. Techn Water Treatment,2012,38(9):17 安兴才,陈作雁,韩立娟,等. 钒-氮共掺杂 TiO₂ 光催化降 解苯酚试验研究[J]. 水处理技术,2012,38(9):17

增加了 ZnO 量子点的粒径。这种情况持续到第 6 天后便趋 于稳定(6.7~6.9 nm),这是因为非水稀溶液中的 ZnO 从 PVP 网格中放出和进入的数量达到一个新的动态平衡,所以 出现一种新的稳定状态。这与未稀释体系中 ZnO 量子点可 以实现长期稳定的情况对比,形成了鲜明的差异,所以在非 水溶液条件下进行 ZnO 量子点的研究,应该要注意浓度影响 因素。同时这也说明,可以通过改变非水溶液的浓度来控制 量子点的尺寸。

图 8 非水稀溶液中 ZnO 量子点的稳定性分析 Fig. 8 The stability analysis of ZnO quantum dots in the ethanol dilute solution

3 结论

(1)以 PVP 作为分散剂,控制 PVP 的用量在 4.0 g (4.0×10⁻⁴mol·L⁻¹)时可以获得尺寸为4.42 nm 的 ZnO 量 子点。PVP 与 ZnO 量子点作用后其荧光光谱表现为 380 nm 处的激子发射峰明显增强,400~600 nm 处的表面态发射峰 显著减弱,这是由于 PVP 对 ZnO 量子点形成有效包覆所致。 PVP 还可以减小 ZnO 量子点间的团聚,提高颗粒的单分散 性,使粒度分布更加集中。

(2)通过控制温度可以有效减弱奥斯特瓦尔德熟化作用 带来的影响,因此可在 50 ℃获得均匀稳定的 ZnO 量子点,并 通过 370~600 nm 区域紫外-可见吸收带的消失得以证明。

(3)在非水溶液环境中,当 ZnO 的浓度相对较高时所制 备的 ZnO 量子点尺寸可保持长期稳定。当降低非水溶液中 ZnO 的浓度时,ZnO 的粒径在陈化初期基本不变,陈化中期 变化较大,陈化后期又基本不变。因此在非水溶液中制备 ZnO 量子点,必须注意 ZnO 浓度的影响。

参考文献

1 Santos B S, Farias P M A, Fontes A, et al. Semiconductor

15 Yang Zhaohui, et al. Synthesis of modified chlorophyll photocatalyst and photodegradation of bisphenol A[J]. Techn Water Treatment,2013,39(10):44

杨兆辉,等.改性叶绿素光催化剂的制备及光催化降解双酚 A[J].水处理技术,2013,39(10):44

16 Dionysiou D D, et al. Effect of ionic strength and hydrogen peroxide on the photocatalytic degradation of 4-chloroben-

nanocrystals obtained by colloidal chemistry for biological applications[J]. Appl Surf Sci,2008,255(3):796

- 2 Narayanan S S, et al. Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA[J]. Chem Phys Lett, 2008, 463(1-3):160
- 3 Guan Qiumei, et al. Porous ZnO thin films by gas evaporation method and their photovoltaic properties[J]. Chem J Chinese Universities, 2012, 33(10):2315 管秋梅,等. 气相沉积法制备多孔 ZnO 薄膜及其光电伏特 性[J]. 高等学校化学学报, 2012, 33(10):2315
- 4 Wang Litong, et al. Synthesis and fluorescence properties of ZnO/CdS quantum dots[J]. J Shanghai Normal University: Nat Sci,2011,40(1):52 王立同,等. ZnO/CdS 量子点的制备及其荧光性能[J]. 上

海师范大学学报:自然科学版,2011,40(1):52

- 5 Patra M K, et al. Synthesis of stable dispersion of ZnO quantum dots in aqueous medium showing visible emission from bluish green to yellow[J]. J Lumin,2009,129(3):320
- 6 Rani S, et al. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells[J]. Solar Energy Mater Solar Cells, 2008, 92(12):1639
- 7 Yang Y, Li Yuanqing, Fu Shaoyun, et al. Transparent and light-emitting epoxy nanocomposites containing ZnO quantum dots as encapsulating materials for solid state lighting [J]. J Phys Chem C,2008,112(28):10553
- 8 Yang Minhao, et al. Synthesis and characterization of a nanocomplex of ZnO nanoparticles attached to carbon nanotubes
 [J]. Acta Phys-Chim Sin, 2007, 23(2):145
- 9 Smith A M, Gao X, Nie S. Quantum dot nanocrystals for in vivo molecular and cellular imaging[J]. Photochem Photobiol,2004,80(3):377
- 10 Bailey R E, Smith A M, Nie S. Quantum dots in biology and medicine [J]. Physica E: Low-dimensional Systems Nanostructures, 2004, 25(1):1
- 11 Smith A M, Ruan G, Rhyner M N, et al. Engineering luminescent quantum dots for in vivo molecular and cellular imaging[J]. Ann Biomed Eng, 2006, 34(1):3
- 12 Liu Meng, et al. Preparation and luminescence properties of ZnO quantum-dots capped with SiO₂ in dilute water-free solution[J]. Chin J Inorg Chem, 2006, 22(4):651
 刘猛,等. 非水稀溶液中 SiO₂ 包覆 ZnO 量子点的制备及其 发光特性研究[J]. 无机化学学报, 2006, 22(4):651
- 13 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版 社,2001:62

(责任编辑 杨 霞)

zoic acid in water[J]. Appl Catal B,2000,26(3):153

- 17 Garcia J C, Takashima K. Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide[J]. J Photochem Photobiol A,2003,155(1-3):215
- 18 Wood P M. The potential diagram for oxygen at pH 7[J]. Biochem J,1988,253(1):287

(责任编辑 余 波)